Читаю линкрилейтед: http://www.math.uiuc.edu/~r-ash/Algebra.html Самое начало, всякие prerequisites:
0.2.2
A well-ordering on S is a partial ordering such that every nonempty subset A of S has a
smallest element a. (Thus a ≤ b for every b ∈ A).
0.2.3
Well-Ordering Principle
Every set can be well-ordered.
ЧО, ПРАВДА????77