Я и мой ёбаный кот на фоне ковра. Войти !bnw Сегодня Клубы
УНЯНЯ. У нас есть немножечко инфы об этом пользователе. Мы знаем, что он понаписал, порекомендовал и даже и то и другое сразу. А ещё у нас есть RSS.
Теги: Клубы:

Алгоритмически процесс появления стоимости в биткоине выглядит так: биткоин зеркально обращается сам к себе по формуле («дай — не дам» + «дай — не дам») x «ну-ка, сука, дай — на» = 1. Возникнув, стоимость биткоина некоторое время сидит тихо и не соотносит себя ни с чем, кроме материнской платы, от которой питается. Затем, по мере накопления бездействия, происходит переполнение намерением, цель которого пока что не существует. И когда простым нажатием кнопки «хоба» майнер выводит биткоин на рынок, его курс будет зависеть только от внешних обстоятельств, которые могут выпучить его в обе стороны. Скажем, если Трамп встретился с Путиным и похлопал его рукой по плечу, биткоин растет, расширяясь под влиянием потепления. А если палкой по голове — падает ниже пояса и сосет даже у монгольского тугрика, который не наполнен ничем. В целом биткоин трудно применим в жизни и создан как валюта будущего, которой в скором времени станут расплачиваться между собой за секс роботы и умные бытовые приборы. [Проф. Е. Шестаков специально для журнала «Мурзилка и жизнь».] (http://holywarium.com/5367/)
#982M4L (1) / @mad_hatter / 7 дней назад
Александр, добрый день. Большое спасибо за ваш сервис. Он мне помог со многими покупками, в том числе через год разыскать и вернуть украденный велосипед!
#6P44ML (6+4) / @komar / 14 дней назад
лайк если ни разу в жизни не покупал и не продавал через контекстную рекламу и не понимаешь почему жужль вообще существует.
#WP79RP (0+1) / @anonymous / 17 дней назад
Коммунисты за Навального: https://www.youtube.com/watch?v=luzrFbI7vF8
#RY05BP (0) / @mad_hatter / 29 дней назад
Вся суть жизни в рашке: >[...] за тем, как соседский дом погружается под землю, Соколов регулярно наблюдает в бинокль. В гараже Соколова лопнул бетонный пол — и появилась яма, в которую он периодически тыкает ломом, а его дом весь покрыт трещинами. >Впрочем, как рассказывает мужчина, есть в этой ситуации свои преимущества: последнее время ему не приходится откачивать отходы из выгребной ямы — «все уходит куда-то вниз». https://meduza.io/feature/2017/10/24/vse-uhodit-kuda-to-vniz
#GFBTT5 (3+4) / @edi / 29 дней назад
Блядь, да где же видео этой Бородиной без ёбаной цензуры? Проебал ссылку и не могу теперь найти.
#Q8LK0D (46) / @mad_hatter / 39 дней назад
Будучи глубоко тронутым трагической гибелью нашей девушки за границей изготовил инструкцию по езде снаружи: http://dump.bitcheese.net/files/nykifac/cambodia.jpeg
#623EWE (5+7) / @komar / 40 дней назад
Весь сакральный, потаенный смысл жизни заключается в том, чтобы отсасывать у молодых. Это контринтуитивный смысл, ведь все время кажется что наоборот. Растешь, мужаешь, учишься, получаешь опыт, накапливаешь знания, капиталы и прочую хуйню. И сосешь у юркого и молоденького паренька. Потому что нихуя ты не скопил на самом деле. Вот ты, знойный и уверенный в себе сеньйор чего-нибудь там. Десять лет в ойти, как говорится, за плечами гора книжек, опыта, кейсов, еще какой-нибудь хуйни. Чувствуешь, что свой модненький аэрон под жопой ты заслужил. А хуй там. Влетает какой-нибудь щегол, насмотревшийся наспех видеоуроков на ютубе и курлык-курлык, закрывает твои, ТВОИ БЛЯДЬ таски. Даже не моргнув. А ты даже начать не успел, роадмап расписывал на месяц вперед, хуе-мое. И постоянно такая хуйня. Интуитивно люди видят в этом паранормальную поеботу какую-то, мистику, блядь. Искали месяц миддла на двухмесячный проект, найти не могли. Плюнули и какому-то щеглу, которого даже джуниором не назовешь, отдали. А тот за два дня сделал. Покурили, почесали репу мужики в твиттере и давай хором рационализировать хуевость решения, которого они в глаза не видели на задачу, которой они не слышали. Ну не может же быть так! А так только и может быть. Десять лет в ойти, пять лет чего-нибудь там - это не предмет для гордости. Хули вы там столько лет сидите, блядь? Чего насидеть хотите? Когда тридцать лет опыта будет, что, изменится что-то? И когда понимание расклада вещей начинает доходить, начинает свербить жопу. А жопные пары обязательно спускать куда-то надо, в какую-нибудь хуйню еще более бестолковую чем стаж. Грамоты да медали выдавать, прелюдно хвалить за заслуги на боевом дежурстве. Торжественная церемония вручения наград и оказания почестей тем, кто бекенд десять лет ментейнил. Вот вы смеетесь с пердунов, а сами там же будете если уже нет.
#Z8N7GG (10+4) / @telegram / 44 дня назад
#8EA23M (2) / @mad_hatter / 64 дня назад
Нахуя, НАХУЯ сотрудники РКН ищут у меня на сайте через яндекс «сигареты», «домашнее порно», «мячик», «порнография», «скачать бесплатно», «бесплатно скачать window», «большая грудь», «купить ромашку», «алкоголь», «голые», «котики», «попа», «слон», «взломанная программа»?
#04YBIP (14+3) / @komar / 76 дней назад
Чо там с платоном, кстате? Пидорахи сглотнули?
#POJ0P9 (5) / @mad_hatter / 80 дней назад

@je
Рекомендую для выбора съемного жилья заюзать google maps api distance matrix. У меня, например, собран список более менее рандомных мест, в которые я могу ходить. Я считаю с помощью google maps api, сколько из разных потенциальных жилищ я буду в среднем времени тратить в пути (либо с коэффициентами, например огромный коэффициент для места работы и маленький для любимого наркопритона, либо поровну) и строю таблицу для всех потенциальных квартир:

  • велосипедом

  • общественный транспорт, меньше всего пересадок (самый нормальный режим для гугл мапс по Москве)

  • только метро, мцк и поезда, потому что наземный транспорт в Москве слишком рандомно ходит

Код, который придется почитать, чтобы как-нибудь использовать. Строит таблички со среднем временем в пути в месяц для каждой квартиры и это же время, конвертированное в рубли (умноженное на константу)

#!/usr/bin/env python3
import pandas as pd
import googlemaps
import pytz

from collections import namedtuple
from pprint import pprint
from itertools import chain, repeat
from datetime import datetime, tzinfo
from functools import partial

gmaps = googlemaps.Client(key='AREDACTEDREDACTEDREDACTED')

# ЗАПОЛНИТЬ: сюда следует ввести адреса потенциальных мест, где я буду жить
# каждое значение может быть либо строкой с адресом, либо GPS координатами
home_addresses = [
    "Россия, Москва, ул. Усачева, 29к3",
    "Россия, Москва, ул. Беговая, 17к1",
    "Россия, Москва, Коптевская ул., 83к2",
    "Россия, Москва, ул. Степана Супруна, 3-5",
    "Россия, Москва, Новокузнецкая ул., 13/15",
    "Россия, Москва, Бутырская ул., 86Б",
    "Россия, Москва, ул. Правды, 6/34",
    "Россия, Москва,  ул. Зои и Александра Космодемьянских, 11А",
    "Россия, Москва, Ленинградский просп., 78К1",
    "Россия, Москва, Новокузнецкая ул., 13С1",
    "Россия, Москва, Севастопольский просп., 5АК1",
    "Россия, Москва, ул. 1812 года, 4/45К2",
    "Россия, Москва, Светлый проезд, 4К4",
    "Россия, Москва, Делегатская ул., 14/2",
    "Россия, Москва, ул. Маршала Рыбалко, 3",
]


# In[31]:

# ЗАПОЛНИТЬ: сюда следует ввести пары вида: 
# (адрес часто посещаемого места, период как часто вы будете добираться туда-обратно между домом и этим местом)
#
# первое значение может быть либо строкой с адресом, либо GPS координатами
#
# если второе значение например 8, это значит,
# что раз в 8 дней я езжу туда и обратно домой.
# если у вас есть место, куда вы ездите раз в 7 дней, но оттуда
# всегда едете еще куда-то, то ставьте значение 14

favorite_places = [
    ("Россия, Москва, ул. Кузнецкий Мост, 13"),  # habimoshka
    ("Россия, Москва, ул.Большая Дорогомиловская, д.5 к.2"),  # кочерга
    ("Россия, Москва, Хохловский пер, 7/9 стр 2"),  # neuron hackspace
    ("Россия, Москва, Бобров пер. 6 стр. 1, 2"),  # библиотека тургенева
    ("Россия, Москва, Милютинский пер., 19/4, стр.1"),  # зеленая дверь
    ("Россия, Москва, шелапутинский переулок, д. 6"), # swing-in-moscow
    ((55.737924, 37.620204)), # рандомный дом в центре
    ("Россия, Москва, Ленинградское шоссе, 39Ас3"), # рандомная потенциальная работа - касперский
    ("Россия, Москва, Кожевническая улица, 7"), # рандомная работа
    ("Россия, Москва, Нижний Сусальный переулок, 5с19"), # рандомная работа
    ("Россия, Москва, ул. Волочаевская, д. 5, корп. 1"), # рандомная работа - крок
    ("Россия, Москва, ул. Летниковская, 10, стр. 5"), # рандомная работа
    ("Россия, Москва, Лесная улица, 7"), # рандомная работа - авито
    ("Россия, Москва, пр-т Андропова, д. 18, корп. 1"), # рандомная работа
    ("Россия, Москва, Дмитровское шоссе, 157с5"), # рандомная работа
    ("Россия, Москва, Трубная улица, 23-2"), # ранд работа
    ("Россия, Москва, Никопольская улица, 4"), # рандом работа
    ("Россия, Москва, улица Ленинская Слобода, 19"), # рандомная работа
    "Москва, ул. Малая Юшуньская, д. 1 к2",  # locus solus
    "Москва, метро Римская",  # предел
    "Москва, Образцова, 14"  # msds
]
favorite_places = list(zip(
    favorite_places,
    repeat(len(favorite_places) / (2 * 4.5 / 7))))


def calc_avg_travel(home_addresses, favorite_places,
                    how: str, depart_when: datetime):
    request_funcs = {
        "bike": partial(gmaps.distance_matrix, mode="bicycling"),
        "car": partial(gmaps.distance_matrix, mode="driving"),
        "walking": partial(gmaps.distance_matrix, mode="walking"),
        "subway_train": partial(
            gmaps.distance_matrix, mode="transit",
            transit_mode=["subway", "train"],
            transit_routing_preference="fewer_transfers"),
        "public_transport": partial(
            gmaps.distance_matrix, mode="transit",
            transit_routing_preference="fewer_transfers")}
    assert how in request_funcs.keys()
    favorite_places = [{"location": location, "period_in_days": period_in_days}
                       for location, period_in_days in favorite_places]
    location_col = []
    duration_col = []
    home_address_col = []
    period_in_days_col = []
    for home in home_addresses:
        result = request_funcs[how](
            [home], [place["location"] for place in favorite_places],
            departure_time=depart_when)
        assert result["status"] == "OK"
        assert len(result["destination_addresses"]) == len(favorite_places)
        assert len(result["origin_addresses"]) == 1

        location_col += result["destination_addresses"]
        duration_col += [record["duration"]["value"] for record in result["rows"][0]["elements"]
                         if record["status"] == "OK"]
        home_address_col += [result["origin_addresses"][0]] * len(result["destination_addresses"])
        period_in_days_col += [place["period_in_days"] for place in favorite_places]

    data = pd.DataFrame({
        "location": location_col, "duration": duration_col,
        "home_address": home_address_col, "period_in_days": period_in_days_col
    })

    data["duration_per_day"] = data.duration / data.period_in_days
    return data

DEPARTURE_TIME = datetime(2017, 9, 5, 12, 0, tzinfo=pytz.utc) # сейчас указано в UTC. Москва это UTC+3

# a dumb test, kinda
def test_gmaps_api():
    home_addresses = [
        "Россия, Москва, Коптевская ул., 83к2",
        "Россия, Москва, ул. Степана Супруна, 3-5"
    ]
    destination_addresses = zip(home_addresses, [1, 3])
    data = calc_avg_travel(home_addresses, destination_addresses,
                           "public_transport", DEPARTURE_TIME)
    print(data)
    durations = data["duration"]
    assert durations.iloc[0] == 0
    assert durations.iloc[1] != 0
    assert durations.iloc[2] != 0
    assert durations.iloc[3] == 0

test_gmaps_api() # yeah it works


data = calc_avg_travel(home_addresses, favorite_places,
                       "subway_train", DEPARTURE_TIME)


unique_home_addresses = pd.DataFrame(pd.Series(data["home_address"].unique()).rename("address_by_google"))
unique_home_addresses["input_home_address"] = home_addresses
print(unique_home_addresses)
# ВАЖНО: проверьте в этой табличке, что в колонке address_by_google стоит адрес,
# понятый гуглом правильно (изначальные адреса - в колонке input_home_address)


# In[62]:

unique_destination_addresses = pd.DataFrame(pd.Series(data["location"].unique()).rename("address_by_google"))
unique_destination_addresses["input_favorite_place"] = [str(pair[0]) for pair in favorite_places]
print(unique_destination_addresses)
# ВАЖНО: проверьте в этой табличке, что в колонке address_by_google стоит адрес,
# понятый гуглом правильно (изначальные адреса - в колонке input_favorite_place)


# In[63]:

print(data.head())
print(data.tail())
# ЗАМЕЧАНИЕ: здесь будут просто показаны конец и начало получившейся таблицы
# Если не лень, можете посмотреть, чтобы каких-то неадекватных значений не было
# duration - время чтобы добраться от места до места в секундах
# period_in_days - тот самый указанный выше период в днях
# duration_per_day - кол-во секунд в день


# In[64]:

# calculate travel time per day for each home address

travel_times_per_day_per_home = pd.DataFrame(
    (data.groupby("home_address")["duration_per_day"].sum() / 60)
    .rename("minutes_of_travel_per_day")
).sort_values(by="minutes_of_travel_per_day")
print(travel_times_per_day_per_home)
# ВАЖНО: это финальный результат
# для каждого адреса квартиры в другой колонке будет указано кол-во минут, затрачиваемых на дорогу, в день
# адреса будут отсортированы от самых выгодных по времени в дороге до самых невыгодных


# In[65]:

COST_PER_HOUR = 340  # RUR
costs = travel_times_per_day_per_home     .assign(hours_per_month=lambda df: (df["minutes_of_travel_per_day"] * 30.5 / 60).round(1))     .assign(converted_rur_per_month=lambda df: df["hours_per_month"] * COST_PER_HOUR)

print(costs)
#UVGF8R (19+6) / @cat-o-nine-tails / 85 дней назад

http://storage9.static.itmages.ru/i/17/0826/h_1503753918_2510327_11f9c37dab.jpeg

Это не газетная утка. Авторитетные врачи города Мадрида официально подтвердили первый случай смерти человека, вызванный употреблением генетически модифицированных продуктов питания.

Трагедия произошла в конце октября 2015 года. 30-летний испанец Хуан Педро Рамос заказал в ресторане салат из помидоров. После съеденных овощей его тело покрылось сыпью, появился отек горла, резко упало артериальное давление. Мужчину отвезли в больницу, но уже через час он скончался. Вскрытие показало, что летальный исход наступил в результате аллергического шока.

Он был спровоцирован съеденными помидорами, которые содержали в себе ген рыбы. А у испанца была аллергия на рыбный белок. Да и вообще он считал себя вегетарианцем. И даже не подозревал, что, поедая овощи, станет жертвой непереносимых им морепродуктов. Медики признали, что при подобной аллергической реакции традиционные лекарства спасти не могут...


link

#8TLE0O (11+1) / @greenjoker / 88 дней назад
ipv6 ready BnW для ведрофона BnW на Реформале Викивач Котятки

Цоперайт © 2010-2016 @stiletto.