Новая архитектура глубокой нейросети (Neural GPU) позволяет ей обучаться алгоритмам быстрее и обобщать лучше чем предложенной ранее Neural Turing Machine .
В частности продемонстрирована тренировка модели на операциях двоичного сложения и умножения 20-битных чисел и обобщение этих операций на 200 и 2000 битные числа со 100% точностью:
http://arxiv.org/abs/1511.08228
Очень интересно какие задачи получится решить с такой архитектурой, учитывая то что даже без такой сильной способности к обобщению глубокие нейросети уже дают выдающиеся результаты (например https://github.com/karpathy/neuraltalk2 https://github.com/abhshkdz/neural-vqa )